
Learning Planning Model for Semantic Process
Compensation

Ahmad Alelaimat, Metta Santipuri, Yingzhi Gou, and Aditya Ghose

Decision Systems Lab, School of Computing and Information Technology University
of Wollongong, Wollongong, NSW 2522 Australia
{aama963,ms804,yg4524,adity}@uow.edu.au

Abstract. Recent advancements in business process conformance anal-
ysis have shown that the detection of non-conformance states can be
learned with discovering inconsistencies between process models and
their historical execution logs, despite their real behaviour. A key chal-
lenge in managing business processes is compensating non-conformance
states. The concentration of this work is on the hardest aspect of the chal-
lenge, where the process might be structurally conformant, but it does
not achieve an effect conform to what is required by design. In this work,
we propose learning and planning model to address the compensation of
semantically non-conformance states. Our work departs from the inte-
gration of two well-known AI paradigms, Machine Learning (ML) and
Automated Planning (AP). Learning model is divided into two models
to address two planning problems: learning predictive model that pro-
vides the planner with the ability to respond to violation points during
the execution of the process model, and instance-based learning model
that provides the planer with a compensation based on the nearest class
when there are no compensations perfectly fit to the violation point.

Key words: semantic process compensation, learning model, auto-
mated planning

1 Introduction

The problem of business process monitoring has received considerable recent at-
tention in the literature. Much of the work done on process monitoring involves
conformance checking, which seeks to ensure that the task sequence being ex-
ecuted is, in fact, a task sequence mandated by the operative process model.
We shall refer to this conception of conformance as structural conformance. This
paper builds on a more sophisticated notion of conformance semantic confor-
mance [1] that seeks to ensure that the observed effects of a process at every
step correspond to the expected post-conditions at those steps.

To provide comprehensive support for exception handling and run-time adapta-
tion in executing process instances, this paper addresses the question of what
can be done to fix non-conformant process instances. The notion of conformance
used here is semantic non-conformance, but that notion subsumes structural
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non-conformance. When a process instance is found to be non-conformant, two
possible strategies might be adopted: (1) aborting the process instance and start-
ing again from scratch and (2) continuing the execution of the process instance
by deploying an appropriate fix. The former strategy can be problematic, since
some of the transactions involved might be impossible to roll back. Our focus,
therefore, is on the latter strategy. We shall refer to the fix as a compensation,
i.e., a suffix of the current task sequence that is distinct to the one originally
mandated by the process design that (eventually) restores to the process instance
to a conformant state.

We offer a novel technique for computing compensations in this paper. Comput-
ing a compensation can be viewed, in the first instance, as a planning problem.
We know the current state of the process, and we also have a specification of
the goals of the process (and hence, a goal state). The planning operators [2] are
the enterprise capabilities that appear as tasks either in the currently deployed
process design, or in other designs in the organizations process repository. The
output generated by a planner will therefore be a task sequence that will restore
the process to a conformant state, or, at the very least, a goal-satisfying state.

The planning problem is not as straightforward as the account above suggests.
There are trade-offs involved in terms of choosing between compensations that
achieve full goal-compliance but delayed restoration of conformance (i.e., the
process executes for a period of time in a non-conformant fashion). There might
be a gap between violation time, when the non-conformance is detected, and
compensation time, when the compensation is deployed. This raises questions
about the trade-off between deliberation and action.

The paper innovates further by viewing the computation of compensations as a
learning problem [3]. Given a history of past executions, it is possible to learn
from past instances of non-conformance the compensations that were deployed
and how effective they were. The problem can be viewed, for instance, as an
instance-based learning problem [4], where we search for the most similar past
instance and then deploy the compensation used in that case.

In the reminder of this paper, we describe learning planning semantic process
compensation, which extends the idea of semantic monitoring and compensation
in socio-technical processes [1]. The rest of the paper is structured as follows. In
section 2, we introduce some preliminaries. Section 3 represents learning plan-
ning semantic process compensation model. We describe the implementation and
empirical evaluation of this model in section 4. Then, in section 5 we present
some related literature about learning planning models and semantic process
compensation. We conclude the work in section 5.
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2 Preliminaries

This section introduces the key concepts used in the reminder of this paper.
First, we introduce process model notations, then we outline annotated strate-
gies for computing semantic process compensation [1].

Definition 1. A semantically annotated process model P is a process
model in which each activity or event is associated with a set of effect scenarios.
Each effect scenario es is a 4-tuple 〈ID, S, Pre, Succ〉, where S is a set of sen-
tences in the background language, ID is a unique identification for each effect
scenario, Pre is a set of IDs of effect scenarios that can be valid predecessors in
P of the current effect scenario, while Succ is a set of IDs of effect scenarios that
can be valid successors in P of the current effect scenario.

Normally, business process models are associated with a set of normative
traces [1], each normative trace nt represents one possible way in which the
process might be executed. However, the actual execution of process models is
not necessarily be normative. Thus, we introduce semantic execution trace
to semantically annotate the execution of process model P at run time.

Definition 2. A normative trace nt is a sequence 〈τ1, es1, τ2, ...esn−1, τn, esn〉,
where

– esi, ..., esn are effect scenarios, and for each esi = 〈IDi, Si, P rei, Succi〉, i ∈
[2, .., n], it is always the case that IDi−1 ∈ Prei and IDi ∈ Succi−1;

– esn = 〈IDn, Sn, P ren, ∅〉 is the final effect scenario, normally associated with
the end event of the process;

– es1 = 〈ID1, S1, ∅, Succ1〉 is the initial effect scenario, normally associated with
the start event of the process;

– Each of τ1, τ2, ..., τn is either an event or an activity in the process.

We shall refer to the sequence 〈τ1, τ2, ..., τn〉 as the identity of the trace nt.

To simplify the presentation later on, the es in the trace, from now, refers to S in
the 4-tuple 〈ID, S, Pre, Succ〉 because ID, Pre, and Succ are meta information
used only to construct normative traces.

Definition 3. A semantic execution trace of a process P is a sequence
et = 〈τ1, o1, τ2, o2, ..., τm, om〉, where each τi is either a task or an event, and
oi is a set of sentences in the background language that we shall refer to as an
observation that describes the process context after each τi. We shall refer to
the sequence 〈τ1, τ2, ..., τm〉 as the identity of the execution trace.

Definition 4. Semantic non-conformance execution trace an execution
trace et = 〈τ1, o1, ..., τm, om〉 is said to be non-conformant with respect to a
semantically annotated process P if and only if any of the following hold: (1)
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there exists an oi in et such that for all normative traces nt′ = 〈τ ′1, es1, τ ′2, ...〉
for which the identity of 〈τ1, o1, ..., τi, oi〉 is a prefix of its identity and oj |= esj
for each j = 1, ..., i − 1, oi 6|= esi (we shall refer to this as weak semantic non-
conformance). (2) If we replace non-entailment with inconsistency in condition
(1) above, i.e., oi∪esi |=⊥, we obtain strong semantic non-conformance. In each
case, we shall refer to τi as the violation point in the process.

Definition 5. Semantically compensated instance is a process instance
et = 〈τ1, o1, ..., τm, om〉 will be referred to as a semantically compensated in-
stance of a (semantically annotated) process P if there exist τi and τj in et,
with i < j, such that τi is a violation point, and there exists a normative
trace nt = 〈τ1, es1, τ2, ...esh1, τh, esh, ..., τn, esn〉 of P with an identity for which
〈τ1, ..., τj−1〉 serves as a prefix, such that ok |= esl for k = j, ...,m and l = h, ..., n.
As well, it must be the case that om |= g. We shall refer to τj as the compensa-
tion point. The compensation point must be a task and not an event.

Definition 6. A compensation given a semantically compensated process
instance et = 〈τ1, o1, ..., τm, om〉 of P with a compensation point τj , a compen-
sation is a process design P ′ for which the completion of τj−1 serves as the start
event and 〈τj , oj , ..., τm, om〉 is a valid normative trace. Every normative trace
associated with P ′ must end in an effect scenario es such that es |= g, where g
is the goal associated with the original process P.

3 Learning Planning Semantic Process Compensation

Constructing semantically compensated instance with learning planning model
is described in term of data mining. This model aims to describe a way in which
process model returns to a semantically conformant state after the occurrence of
a violation point. The first part of the learning model is compensation description
algorithm, where a semantic solution suggested to fix semantic non-conformance
state. Given a process execution log, normative trace, and execution trace holds
a violation point, compensation description algorithm will be able to produce
compensated process instances. Compensation description algorithm generates
compensated process instances based on three features: execution violation point,
normative desired effect, and goal associated with the original process P.

The learning model is divided into two models to address two planning problems.
The first problem is prediction problem [5], where predictive model provides the
planner with the ability to respond to violation point during the execution of the
process model [6]. In the predictive model, the predicted target is an instance;
one way in which the detected violation point might be compensated. The second
problem is instance-based problem [4], where instance-based learning model pro-
vides the planner with experiences that are solved with the same compensation,
thereby violation points can be compensated based on their classification. The
reason behinds using instance-based learning model is to provide planers with
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a compensation based on the nearest class when there are no compensations fit
exactly to the violation point. Figure 1 shows the detailed framework of learning
planning semantic process compensation .

Fig. 1. Learning planning semantic process compensation model

In figure 1, process execution log, normative traces and execution log are model
inputs. Compensation description algorithm takes the role of selecting relevant
features [7] for data modeling which are violation point, compensation point,
and process association goal. The output of compensation description algorithm
is a set of descriptions that illustrate potential fixes of the detected violation
point. Data modeling generates a prediction or classification classes based on
selecting relevant criteria. When all was said and done, automated planning
befits from the learned knowledge through the using of exploitation learned
knowledge algorithm, where it relies on employing the learned knowledge in
planning problem description.

3.1 Compensation Description

Compensation description algorithm is an algorithm-based software that has
been designed to describe semantic compensation instances. Compensation de-
scription algorithm takes execution log, normative traces, execution trace, and
a goal associated with the original process P as inputs. Standing on definition
5 and 6, compensation description algorithm produces semantic process com-
pensation. Algorithm outputs illusteat selecting relevant features [7], where the
output might be singular task or sequence of tasks that describes how to execute
the rest of the process model in which such violation point can be compensated.
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Compensation Description Algorithm

1: EL← execution log Data set
2: nt← normative trace Array
3: et← semantic execution trace Array
4: de← desired effect String
5: g ← associated goal String
6: Vp ← violation point String
7: for j=1 to size(nt)
8: if similar(Vp, nt[j]) == 1 then
9: de← nt[j + 1]

10: end for
11: for k=1 to size(EL)
12: if (EL[k,end] != g) then
13: continue
14: if ismember(EL(k), et) == 1 && ismember(EL(k), de) == 1 then
15: Compensation← EL(k, index(Vp) : index(end))
16: else
17: Print(No compensation found)

18: end for

Compensation description algorithm starts with discovering an es ∈ nt that
serves as a desired effect to the violation point (τi, oi). A semantically compen-
sated process instance is an instance that holds an observation entails g, (τi, oi)
such violation point and observation such the desired effect. When relevant pro-
cess instance found, compensation description algorithm starts recording all ac-
tivities positioned between (τi, oi) and g. Thus, compensation might be singular
task or sequence of tasks. Compensation description algorithm can be seen as
a pre-processing phase, where each description will be used as nominal class [8]
appended at the end of its instance, that way learning models are able to learn
only from relevant experiences.

3.2 Data Modeling

Data modeling is divided into two models to address two planning problems.
First problem is prediction problem, where the learning predictive model pro-
vides the planner with the ability to respond to violation points during the
execution of the process model [6]. In the predictive model, the predicted com-
pensation is one way in which the violation point might be compensated. The
second problem is instance-based problem, where instance-based learning model
provides the planner with experiences that are solved with the same compen-
sation, thereby violation points can be compensated based on their classification.

The predictive model is a decision tree created using J48 prediction algorithm
[5]. In an abstract sense, a compensation can be seen as a prediction of a singu-
lar task or a sequence of tasks that returns the process model to semantically
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conformant state. After the occurrence of a violation point, J48 prediction algo-
rithm predicts a compensation based on compensation description algorithm.

Instance-based learning model is a description of instances generality created
using IBK classification algorithm [4]. The reason behind selecting IBK is to
design a learning model that is able to provide planers with a compensation
based on the nearest class when there are no compensations fit exactly to the
violation point. modeling of J48 prediction algorithm and IBK classifier has been
implemented using Waikato Environment for Knowledge Analysis (WEKA) [9]

3.3 Data Exploitation

Exploitation of the learned knowledge [3] can be leveraged in two orientations:
(1) an execution trace that has process compensation instance in EL can be
planned using the predictive model. (2) an execution trace that has no pro-
cess compensation instance in EL can be planned using instance-based learning
model. The following shows exploitation of the learned knowledge algorithm.

Exploitation of the learned knowledge

1: (:initial ← violation point
2: predicted compensation ← predicted compensation based on J48
3: nearest compensation ← nearest compensation based on IBK
4: if (∃ compensation ∈ EL | compensation is relevant to (: initial ) then
5: (:goal ← predicted compensation
6: else
7: (:goal ← nearest compensation

In term of automated planning [2], semantic process compensation problem de-
scription consists of (:init state that represents the structural design of the
process and the violation point, and (:goal state represents what is the fact
that we would to be true.

3.4 Semantic Process Compensation Planning

In the context of automated planning represention, exploited knowledge has been
achived using Planning Domain Definition Language (PDDL) [10]. PDDL do-
main has been designed based on the logic of Petri-net [11]. In an abstract sense,
the EXECUTE of τi enables the transition of data flow from the current Event into
an Event satisfies both Output function and Input function. In PDDL prob-
lem domain, detecting (:initial state and reasoning about (:goal state are
considered in exploitation of the learned knowledge. Figure 2 shows PDDL rep-
resentation for action EXECUTE from emergency department process example [12].
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(:action EXECUTE
:parameters (?exe - Task ?eve - Event)
:precondition (forall (?e - Event)

(imply (input_function ?exe ?e)(> (Patient_at ?e) 0)))
:effect (and (forall (?e - Event)

(when (input_function ?exe ?e)(decrease (Patient_at ?e) 1)))
(forall (?e - Event) (when (output_function ?exe ?e)
(increase (Patient_at ?e) 1)))

Fig 2: PDDL representation for EXECUTE action

In order to solve semantic process planning problem, off-the-shelve domain inde-
pendent planner has been used. SGPlan6 planning system [13] used to solve the
problem domain shown in the running example (section 4.1) through the plan
shown in figure 2.

4 Implementation and Evaluation

In this section, we outline an implementation of learning planning semantic
process model described previously and present empirical results. The imple-
mentation of proposed model starts with compensation description, running in
Matlab. It is useful to note, that we omit some details but these can be found
in [12]. On the other hand, we use a machinery to semantically simulate process
instances. After compensation description, process instances is tagged with a
tag that represents nominal class (i.e., discrete class) [8], in which it serves as a
target for prediction and classification.

As indicated in advance, modeling of J48 prediction algorithm and IBK classifier
has been implemented using WEKA [9]. Predictive and instance-based models
take tagged process instances as an input. Learning predictive model employed
after the generation of compensation descriptions based on compensation de-
scription algorithm (see section 3.1), while instance-based mode employed when
we need to capture the nearest way in which such violation point could be com-
pensated. In term of relevance measurement, the ideal k-nearest neighbors is k=3.

In term of automated planning, we used PDDL to illustrate the running example
in the following section. Planning starts with an off-the-shelf planner to plan a
compensation for 5 randomly-chosen process instances base on compensation
description algorithm and learning predictive model. In order to solve the given
problem, SGPlan6 [13] has been used.

4.1 Running Example

Figure 3 illustrates a process from health care domain. The figure exemplifies
the motivation of learning planing semantic process compensation. In a process
model taken by [12], at a hospital equipped with a process-aware information
system, when patients arrive they assigned a triage priority (i.e., an assignment
of urgency degrees), registered and then assigned to a responsible nurse. The
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assigned nurse checks patient condition in parallel, but not simultaneous, with
doctor visit, X-Ray and then Final visit. In the proposed example, there are
set of possible observation of (check, X-Ray, visit, final visit) in which patient
condition is represented and accordingly appropriate treatment.

Fig 3: A BPMN notation for emergency department process

For instance, a violation point appears when observation(visit)= Patient blood
pressure expected readings are lower at execution trace holds observation(check)=
Patient pressure check reveals elevated readings. Table 3 represents a fragment
of execution trace terminated after the occurrence of a violation point.

execution trace observations

case activity timesatmps observation timestamps

1000 Triage 02:17:00 Patient urgency degree is orange 02:19:00
1000 Register 02:25:00 Patient registered 02:28:00
1000 Visit 02:47:00 Patient blood pressure expected readings are lower 02:50:00
1000 Check 02:53:00 Patient pressure check reveals elevated readings 02:56:00

Table 1. An execution trace of emergence department process holds a violation point

In table 1, despite the structure of the execution trace until the violation point
conforms to process model and vice versa, but it does not semantically. Non-
conformance states might be much complicated and require deep models to de-
tect them such as [14] and [15].

4.2 Learning Planning Model Evaluation

In this section, we aim to establish that the proposed model able to generate
reliable throughput. Evaluation of learning model is helpful in achieving the
following:

1. An accurate description of process instance compensations through compen-
sation description algorithm.

2. A correct prediction of target variables based on learning predictive model.
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3. An efficient generalization of process instances using instance-based learning
model.

For learning model, we considered a synthetic process log consistences of 1000
instances. In table 2, compensation description, learning predictive model, and
instance-based learning model performance measures are illustrated.

Compensation Description Learning Predictive Model Instance-based learning model

# of instances 1000 Correctly Classified 995 # of nearest neighbors 3
Precision 0.974 Precision 0.997 Precision 0.997
Recall 1.00 Recall 0.995 Recall 0.995
F-measure 0.986 F-measure 0.995 F-measure 0.995

Table 2. Learning model evaluation

In term of semantic process compensation planning, we evaluated five randomly-
selected process instances, where they supplied first as a test set to the prediction
algorithm. For comparison, we included two evaluation attribute: the number of
required actions to reach to the compensation point and planning time.

Table 3 represents a modest evaluation. An off-the-shelf classical planner used
to generate compensation plans according to five different scenarios. The right-
most column shows the required time to compute the plan. Computing number
of actions is important to identify where the earliest compensation is possible [1].

Process
Instance ID

Process compensation plan
# of

actions
planning

time

1

0.001: (EXECUTE X-RAY 2) [1]
1.002: (EXECUTE VISIT 2) [1]
2.003: (EXECUTE FINAL VISIT) [1]
3.004: (EXECUTE PREPARE) [1]

4 0.019

2

0.001: (EXECUTE CHECK) [1]
1.002: (EXECUTE X-RAY 1) [1]
2.003: (EXECUTE VISIT 1) [1]
3.004: (EXECUTE FINAL VISIT) [1]
4.005: (EXECUTE PREPARE) [1]
5.006: (EXECUTE ORGANIZE AMBULANCE) [1]

6 0.017

3

1.002: (EXECUTE X-RAY 1) [1]
2.003: (EXECUTE CHECK) [1]
3.004: (EXECUTE VISIT 1) [1]
4.005: (EXECUTE FINAL VISIT) [1]
5.006: (EXECUTE PREPARE) [1]

5 0.015
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4
0.001: (EXECUTE FINAL VISIT) [1]
1.002: (EXECUTE PREPARE) [1]
2.003: (EXECUTE ORGANIZE AMBULANCE) [1]

3 0.014

5
0.001: (EXECUTE CHECK) [1]
1.002: (EXECUTE FINAL VISIT) [1]
2.003: (EXECUTE PREPARE) [1]

3 0.015

Table 3. compensation plans of five randomly selected process instances

The evaluation of learning model shows that: compensation description algo-
rithm able to produce an accurate description of semantic process compensa-
tion, learning predictive model is able to predict correct target variables, and
instance-based learning model is able to generalize process instances correctly.
The results obtained from the planning model are reasonable and encouraging.
As a result, learning planning semantic process model is able to compute an
accurate and correct compensation plan. Moreover, it beneficial in computing
where the earliest compensation is possible.

5 Related Work

As far as we know, there are no literature illustrated the use of learning plan-
ning models as an aid for semantic process compensation. Thus, related work
is divided into two subsections: learning planning models and semantic process
compensation.

5.1 Learning Planning Models

The nearest research of departure for our work is learning planning portfolio
[16], this model uses two shapes of machine learning: classification model (J48
decision tree) to solve the selection strategy based on planner ability to solve
the problem, and classification model (IBK) to find the required time to com-
pute the best plan. In [17], case-based planning approach for retrieve planning
cases based on heuristically matching function is proposed, where similar reuse
candidates can be chosen from plan libraries to solve similar planning problems
in the future. Different from [16] and [17], compensation description algorithm
reduces learning cost through allowing the learner to learn only from relevant
experiences. The model taken in [18], provides rational learning to capture suit-
able action in different planing domains. The relational decision tree used as a
guidance for ordering node evolutions which helps in limiting search tree, such
guidance improves planner performance through controlling search knowledge.
In [19], an architecture for integrating planning execution and learning (PELA)
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is presented, where PELA states the learning task with upgrading PDDL do-
main model which is executed initially with no prior sense of real life uncertainty.
Relational learning task represents action performance patterns that can be com-
piled based on metric or probabilistic representation. When a decision has to be
made, our model considers not only predictions, but also classifications.

5.2 Semantic Process Compensation

Learning planning semantic process compensation is strongly inspired by se-
mantic monitoring and compensation [1]. The proposed approach in [1] intro-
duces semantically annotated solution to detect and compensate semantically
non-conformant state in socio-technical processes. In [20], compensation orches-
trating for the semantics of long-running transaction is proposed. On the other
side, [21] propose a framework for web services error-handling choreography.
Many literature discussed semantic model checking. For example, [14] introduce
semantic model checking algorithm to reason about web services behavior. In a
similar way, [15] present semantic model checking for discovering bugs in cloud
systems. Our approach is an assistance to these approaches, because learning
past compensations allows to obtain effective plans to compensate semantically
non-conformant states.

6 Conclusion

This research represents two primary contribution. First, we designed an algo-
rithm to select relevant features that helps learning model to discover potential
compensations. Second, we showed how to exploit and employ learned knowl-
edge for planning semantic process compensations. We have shown that learning
planning model can be competitive with state-of-the-art process compensation
models. As far as we know, no prior learning planning model has employed to
handle semantic process compensation issue. A key challenge in applying seman-
tic process compensations based on learning planning model is to accurately deal
with choosing a robust fix among available compensations. One natural extension
to the semantic process compensation introduced in this research is to consider
the trade-off between compensation search-time and tolerable delays in terms of
choosing between compensations.
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