
Mining goal refinement patterns: Distilling
know-how from data

Metta Santiputri1,3, Novarun Deb2, Muhammad Asjad Khan3, Aditya Ghose3,
Hoa Dam3, and Nabendu Chaki2

1 Department of Informatics, State Polytechnic of Batam, Batam 29461, Indonesia
metta@polibatam.ac.id

2 Department of Computer Science and Engineering, University of Calcutta, Kolkata,
India novarun@acm.org, nabendu@ieee.org

3 Decision Systems Lab, School of Computing and IT, University of Wollongong,
Australia NSW 2522 aditya@uow.edu.au, hoa@uow.edu.au

Abstract. Goal models play an important role by providing a hierarchic
representation of stakeholder intent, and by providing a representation
of lower-level subgoals that must be achieved to enable the achievement
of higher-level goals. A goal model can be viewed as a composition of a
number of goal refinement patterns that relate parent goals to subgoals.
In this paper, we offer a means for mining these patterns from enterprise
event logs and a technique to leverage vector representations of words
and phrases to compose these patterns to obtain complete goal models.
The resulting machinery can be quite powerful in its ability to mine
know-how or constitutive norms. We offer an empirical evaluation using
both real-life and synthetic datasets.
Keywords: Goal model mining, goal refinement, know-how

1 Introduction

Goal models play a critical role in requirements engineering, by providing a
hierarchic representation of statements of stakeholder intent, with goals higher
in the hierarchy (parent goals) related to goals lower in the hierarchy (sub-goals)
via AND- or OR-refinement links. Goal models encode important knowledge
about feasible, available alternatives for realizing stakeholder intent represented
at varying levels of abstraction. A number of prominent frameworks leverage goal
models, including KAOS, i* and Tropos[8].

There is a growing realization that data analytics (this term being liberally
interpreted to denote a broad repertoire of machine learning, data mining and
natural language processing techniques) have an important role to play in software
engineering in general, and requirements engineering in particular. In that spirit,
this paper addresses the question: can enterprise goal models be mined from
readily available enterprise data?. It is useful to distinguish, at this point, the
exercise of mining goal models from the exercise of mining goals. That latter
problem is arguably more difficult, since user goals or stakeholder intent are
often never manifested in enterprise data, and are often not explicitly articulated



2

either. Knowledge about how a goal might be refined into lower-level sub-goals is
a different matter altogether. Goal refinements that have been deployed before
(either explicitly or implicitly) are ultimately manifested in operational data. Our
intent in this paper is to leverage data of this form.

Mining goal models adds value in a number of ways. First, it offers a way
around the model acquisition bottleneck (where the high investments associated
with careful modeling often prevents businesses from leveraging the full value
of goal modeling). While our approach does not guarantee that all models
mined will be correct and accurate, it does ensure that the goal models (or
model fragments) that are mined can be quickly deployed with minimal editing
(the requirement for oversight and editing by analysts remains). Overall, the
approach improves the productivity of modelers/analysts; instead of starting
with a “blank sheet", our machinery generates “first draft" models or model
fragments that can be composed to obtain usable models. Second, our approach
could potentially improve model quality, by mining from execution histories from
which “undesirable" executions have been filtered out. Third, model anti-patterns
can be mined from “undesirable" execution data. Fourth, this machinery can be
used for goal conformance checking.

Goal models can also be viewed as statements of know-how, where an AND-
decomposition provides the know-how for achieving a parent goal by satisfying a
set of sub-goals. Mining know-how patterns is independently useful. In particular,
it permits us to use goal models as effectors, where a goal model is used to
specify the desired state of the enterprise while decomposition via a sequence
of know-how patterns enables us to identify the operational interventions which
would help realize the desired state of the enterprise.

AND-refinement patterns can also be viewed as constitutive norms [4]. A
constitutive norms specifies how the act of achieving conditions c1, c2, cn counts
as achieving condition c (we can also, without loss of generality, replace conditions
with goals or actions). For instance, the acts of putting a tea bag in a cup followed
by puring hot water into the cup counts as making tea. The account we offer in
this paper can thus be also viewed as an account of constitutive norm mining.

We address two problems in this paper. First, we address the goal refine-
ment pattern mining problem, where a goal refinement pattern is of the form
sg1, sg2, . . . sgn → G where G is the parent goal while each sgi is a sub-goal,
and where the statement is that the act of achieving each sub-goal conjointly
leads to the achievement of the parent goal. These latter are referred to as
AND-refinement patterns, and are the main focus of this paper (OR-refinement
patterns can be mined via small variants of the techniques discussed here, but
a full discussion is omitted due to space constraints). Second, we address the
problem of composing individual goal refinement patterns into goal trees (more
generally goal graphs) which describe not only how a goal into subgoals, but also
how these subgoals can be further refined into sub-subgoals and so on.

We present the general approach in Section 2. The identification of goal re-
finement patterns involves mining event logs (partitioned by levels of abstraction)
that leverage temporal correlation patterns between goals and subgoals (recall
that an event log is a collection of time-stamped events). The composition of goal



3

refinement patterns relies on matching subgoal in one refinement pattern with
the parent goal of another such pattern - we use word2vec [5] to identify semantic
similarity between words and phrases that appear in the goals and subgoals for
this purpose. We present a preliminary empirical evaluation of these proposals in
Section 3.

2 General approach
Temporal correlation patterns relating goals and subgoals: A goal and
its subgoals are typically related via temporal correlation patterns which impose
temporal constraints on the achievement of the parent goal relative to the
achievement of the subgoals. One such pattern (and the one we will leverage in the
empirical evaluation in this paper) requires that event denoting the achievement
of the parent goal occur immediately or soon, after the events denoting the
achievement of the subgoals. We shall call these sequential correlations. Other
examples of temporal correlation patterns leverage relations from Allen’s Interval
Algebra [2]. In some settings, we might require the interval over which each
subgoal is achieved be included entirely (using the during relationship from the
Interval Algebra) in the interval over which the parent goal is achieved. In some
settings it might make sense to relate these intervals using the meets, finishes
or is equal to relations from Interval Algebra.

Mining goal refinement patterns from multi-layered event logs: In-
dependent of which temporal correlation pattern applies in a given setting, it is
critical that the input event logs are partitioned into layers based on different
levels of abstraction. A key assumption underpinning this proposal is that events
denoting the achievement of parent goals appear in a log of more abstract events,
while events denoting the achievement of subgoals appear in logs of more refined
(or lower-level) events. In other words, we assume a hierarchy of levels L1, L2, . . .
such that Li is always at a higher level of abstraction than Li+1. The idea is that
goal refinement always occurs between goals manifested by events in adjacent
levels in this hierarchy. The key question to address now is: How do we obtain
this partitioning/hierarchy? Possible strategies include:
– Leveraging part-whole relationships between objects: We know that a photo,

a front page, an embedded chip, a visa or an expiry date are parts of a more
abstract object called a passport. Any event involving the passport photo,
or a visa etc. will belong to a lower level in the hierarchy than any event
involving the passport.

– Leveraging the source of the data: We know that any event from a process log
is likely to be lower in an abstraction hierarchy than any event in a message
log. Similarly, events that manifest in the IT infrastructure are typically lower
in abstraction than events that involve applications, which in turn are lower
level than events concerning business services.

– Leveraging the organizational hierarchy: We know that events associated
with roles lower in the organizational hierarchy will likely be lower in the
abstraction hierarchy than events associated with roles higher in the organiza-
tional hierarchy. The intuition is that employees in a business unit are usually



4

tasked with achieving lower-level goals than the manager of that business unit.
Indeed, the goals of the manager rely on the achievement of the sub-goals
that the employees in that unit are tasked to achieve. The employee-level
goals can thus be viewed as AND-refinements of the manager-level goals.

With the abstraction hierarchy of events thus obtained, our task in now to
mine (temporal) sequential correlations between events in adjacent levels of the
abstraction hierarchy. Thus a passport photo check, a passport validity check,
a visa check and a passport stamping event would be followed soon after by a
higher-level event indicating that an immigration check has been completed. We
would expect to see this pattern repeated frequently. If this frequency meets a
user-specified threshold, we conclude that it is indicative of a goal refinement
pattern.

Composing goal refinement patterns: The challenge in composing goal
refinement patterns to obtain goal models (or goal trees) is the difficulty in
relating semantically similar, but syntactically highly distinct, specifications of
goals and subgoals. For instance, a subgoal might be represented in natural
language as: log labour hours for billing. Quite separately, we might find a mined
goal refinement pattern for a parent goal represented textually as: track technician
time for charging the customer. Human intuition suggests that these two goals are
semantically quite similar, and any available know-how for the latter would also
be useful for the former. Our strategy is to use a state-of-the-art vector encoding
of words and phrases, called word2vec [5] which is effective in identifying semantic
similarity. Word2vec learns vector representations of words and phrases such that
semantically similar ones are projected in close proximity to each other in the
vector space. Given a pair of phrases, word2vec returns a real-valued measure
of semantic similarity (the higher the value, the more similar the phrases are).
By setting an appropriate threshold for the similarity measure (this will require
domain-specific tuning), we can connect a phrase describing a subgoal in one
goal refinement pattern with a phrase describing a parent goal in another goal
refinement pattern.

3 Evaluation
The sequential patterns of interest are those where a sequence of events
at level Lx+1 are immediately followed by an event at level Lx, where
Lx is always at a higher level of abstraction than Lx+1. Therefore, in
both setting, to determine the correlation between events in adjacent lev-
els of the abstraction hierarchy, we first create a joined log of the form:
〈〈〈〈〈T11〉, . . . , 〈T1n〉〉, T1〉, . . . , 〈〈〈Ti1〉, . . . , 〈Tim〉〉, Ti〉, . . .
〈〈〈Tj1〉, . . . , 〈Tjk〉〉, Tj〉 where each 〈Ti, Ti+1〉 pair represents contiguous events in
the higher level event log Lx and each Tij represents the j-th event in the lower
level Lx+1 related to event Ti and executed during Ti’s execution time. This
joined log represents the sequence database provided as input to the frequent
closed sequential pattern miner.

In our instance, we will apply BIDE+ algorithm, but other similar algorithms
could be used instead. The miner then returns the sequence 〈〈Ti1, . . . , Tin〉, Ti〉



5

that satisfy the threshold minsupport to represent the correlation of event Ti of
the higher level abstraction and event sequence 〈Ti1, . . . , Tin〉 of the lower level
abstraction. The threshold (minsupport) is bounded by the number of distinct
cases which a sequence with an event suffix Ti occurs. As with any association
rule mining technique, minsupport represent the support—higher values of this
can give us more reliable results but rule out potentially interesting rules and
vice versa.

Evaluation with synthetic data: We perform the evaluation with an event
log of a telephone repair process4. This example describes a business process in
a telephone repair company. The event log consists of seven activities: Register,
Analyze Defect, Repair (Complex), Repair (Simple), Test Repair, Restart Repair,
Inform User, and Archive Repair.

We consider this event log as the event log in the higher level, namely the
events in the business layer. This event log of the higher level contains 7152
entries. For sequence pattern mining, SPMF pattern mining library [9] is used to
run frequent sequential pattern mining algorithm BIDE+ [10].

We then generated the joined log with each record represents a sequence of
function invocation events from the simulated lower level event log followed by
a complete event of the task in the higher level event log. Afterwards, we used
the sequence pattern miner to mine the task-function correlation. The result is
shown in Table 1.

Table 1. Result

Goal Sub-Goals

Register create new customer service ticket, print repair receipt for the cus-
tomer, email repair order confirmation

Analyze Defect perform a series of standard diagnostic tests to identify fault, assign
a (simple/complex) label to the ticket after defect assessment,contact
customer and seek approval for complex repairs

Repair Order replacement parts if repair type is complex,log labour hours
for billing, Change ticket status to ‘fixed’

Test Repair Perform series of standard tests, Send phone to repair department if
not approved and restart repair

Restart Repair Update ticket status to ‘in diagnosis’
Inform User Send out email/text to customer, receive payment based on hours

and repair type
Archive Repair Close and archive ticket

Evaluation with real-life data: We use the data from BPI Challenge 2015
(BPIC’15)5 which features building permit application process in five Dutch
municipalities from year 2010 until 2015. The permit application consists of three
main process: (1) the municipality receives permit application, (2) the munic-
ipality performs a number of checks on the request requirements (information
4 http://www.processmining.org/_media/tutorial/repairexample.zip
5 https://www.win.tue.nl/bpi/doku.php?id=2015:challenge



6

Table 2. The sequential correlations between events from different groups of resources

Events Correlated to event

01_HOOFD_01, 01_HOOFD_02 01_HOOFD_03
01_HOOFD_01, 01_HOOFD_02 01_HOOFD_04
01_HOOFD_01, 01_HOOFD_02 01_HOOFD_05
01_HOOFD_05 01_HOOFD_06
01_HOOFD_06, 01_HOOFD_10 01_HOOFD_11
01_HOOFD_1 01_HOOFD_2 01_HOOFD_3 01_HOOFD_4 01_HOOFD_5
01_HOOFD_4, 01_HOOFD_5 05_EIND
01_HOOFD_4 01_HOOFD_5
01_HOOFD_5 06_VD

completeness) and determines procedure applicable, and (3) competent authority
evaluates permit application and decides on permit. Among the five Dutch mu-
nicipalities, the first municipality has the most well-structured organization [3, 7].
Hence, we use the dataset of only the first municipality in our exercise.

We take the event log for the first municipality (BPIC15_1.xes) and view
the log using the Dotted Chart visualization provided by ProM [1]. The Dotted
Chart helps in identifying the activities performed by the resources (as specified
in the log). Using the Dotted Chart, we can group similar sets of activities and
identify organizational roles for each such group. These organizational roles relate
to the different hierarchic levels that exist within the Dutch municipality.

We generate event sequences from the event logs and use them as input for
the sequential pattern mining. The result is shown in Table 2.

Table 3. The sequential correlations provided to the modeler

registration received, reception → change procedure, ap-
plication forwarded
regular procedure, registration date received → subcases
completed
procedure started, subcases checked, content assessed,
permit issued → permit sent to stakeholder
permit issued, permit sent to stakeholder → case termi-
nated
objection registered → procedure term extended

In our result, there are nine correlations identified. Seven of the correlations
are between events from adjacent levels, however two correlations (identified by
dashed lines), namely the correlation between 01_HOOFD_06, 01_HOOFD_10
and 01_HOOFD_11 and the correlation between 01_HOOFD_4, 01_HOOFD_5
and 05_EIND, are between events from non-adjacent levels. These two patterns
were picked up by the sequential pattern miner from the input sequences since
they pass the threshold. This situation indicates that the case handovers between
resources in the municipality do not always follow the structure or restricted to
adjacent levels, but may also happen between resources from non-adjacent levels.



7

We leveraged the help of an expert modeler to asses the correlations discovered
through our techniques on both the soundness and the completeness. We provide
the modeler with the dataset consists of Case ID, ActivityNameEN (which
describes the activity in English, instead of Activity name/code) and Resource.
We also provide them with the correlations discovered earlier. The correlations
that we provide for the modeler is shown in Table 3. We use the ”→” symbol
to make the correlations easier to understand. The context of the correlations
given to the modeler is that the consequence (right of the arrow) is achieved if
all the antecedents (left of the arrow) are achieved, or the antecedent has to be
performed or completed first before the activities in the consequences can be
performed.

The modeler concluded that all of the correlations are in accordance with the
event log. They also noticed that there are correlations which are not included
in the list, such as the phase application received → confirmation receipt sent
and procedure confirmation sent, senddate procedure confirmation entered →
registration date published. However, after we look closely into the event log, we
noticed that these events are performed by resource(s) from the same group,
therefore they do not included in our result. This is not to discount that the
correlations are not valid, however these correlations are not relevant in our
exercise. The modeler also noticed that there are activities that they deemed to
be important but do not shown in the result, such as ask stakeholders views and
request further information. We argued that we only picked up main activities
which occur frequently and we also did not include detailed activities, thus there
are activities which do not included in our result.

Evaluating goal-subgoal similarity: For evaluation we rely on Google’s
pre-trained word2vec model which they have publicly made available. It includes
word vectors for a vocabulary of 3 million words and phrases that has been trained
on approximately 100 billion words from a Google News dataset. Although for
this evaluation, we used a pre-trained model, training a model with a smaller
but more targeted and domain-specific corpora is not hard. We have done this
but have not achieved results thus far that surpass the results we have obtained
using the pre-trained model. We took the goal refinement patterns obtained in
the evaluation using the phone repair scenario described above (8 in total), and
extended these with a repertoire of 40 additional goal refinement patterns (this
was necessary to be able to further refine the sub-goals initially obtained from
the mining of a 2-level event log).

We ran our program on a large amazon EC2 instance with 16GB RAM using
64-Bit Python. For querying the model, our program first loads the 3.6 GB
pre-trained model in memory using the word2vec module of the Gensim Library
[6]. Then given two input phrases it computes the average vector for both and
calculates the cosine similarity between the two phrase vectors. Common English
words (stop words) are removed during the similarity calculation.

The Word2Vec metric tends to place two words close to each other if they
are semantically similar. In the results table below we can see that ’Print repair
receipt for the customer’ and ’Print customer service repair order’ have a high
similarity score even though the phrases use different vocabulary to explain the



8

same sub-goal. The notion of similarity used here is just cosine distance (dot
product of vectors). It’s closer to 1 if the phrases are semantically similar and for
two completely dissimilar phrases, the similarity is close to 0. e.g ’update issue
status to ‘in repair’ and ’dissemble the phone components’ refer to two different
goals and are very far apart semantically thus receiving a score of 0.130887. In
some cases like ’log labor hours for billing’ and ’Track technician time for charging
the customer’ the score is neither too high nor too low. We can use a certain
threshold e.g (0.60) to filter cases where we not fully confident of a semantic
match.

Table 4. Goal Text Similarity Results

Sub-Goal Text Sub-Goal(Alternative Text) Similarity Score

create new customer service ticket open new repair issue for the cus-
tomer

0.623894

Print repair receipt for the customer Print customer service repair order 0.863028
Send out courtesy product check-in
confirmation email

Email repair order confirmation 0.742585

Perform a series of standard diag-
nostic tests to identify fault

troubleshoot the problem by follow-
ing a step-by-step testing methodol-
ogy

0.635703

Assign a label to the issue after de-
fect assessment

specify fault type by adding a tag to
the issue after diagnosing the prob-
lem

0.637491

Seek Customer approval for complex
repairs

Ask permission from customer if a
part replacement is required

0.640503

Order replacement parts if repair
type is complex

Send out replacement request for
new components

0.645564

Log labor hours for billing Track technician time for charging
the customer

0.469291

Change issue status to ‘fixed’ update issue status to ‘ready to re-
view’

0.819758

Perform series of standard tests Change issue status to either ‘ap-
proved’ or ‘not fixed’

0.233664

Send phone to repair department if
not approved and restart repair

Close and archive issue 0.277631

Update issue status to ‘in repair’ dissemble the phone components 0.130887

4 Conclusion

The ability to mine goal models has important implications for requirements
engineering, as well as a wide variety of other settings that benefit from goal
modeling. The machinery that we present can therefore provide useful directions
for future research and development. This machinery can also be used to mine
know-how which can support enterprise innovation strategies in significant ways.
The empirical evaluation presented in the paper is preliminary in nature, but
provides evidence that suggests that there is merit in pursuing this general
approach.



9

References

1. van der Aalst, W.: Process mining software. Process Mining Part V, 325–352 (2016)
2. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of

the ACM 26(11), 832–843 (1983)
3. Blevi, L., den Spiegel, P.V.: Discovery and analysis of the Dutch permitting process.

In: Fifth International BPIC. BPIC’15 (2015)
4. Boella, G., Broersen, J., van der Torre, L.: Reasoning about constitutive norms,

counts-as conditionals, institutions, deadlines and violations. In: Pacific Rim Inter-
national Conference on Multi-Agents. pp. 86–97. Springer (2008)

5. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

6. Řehůřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks. pp. 45–50. Valletta, Malta (2010)

7. Teinemaa, I., Leontjeva, A., Masing, K.O.: BPIC 2015: Diagnostics of Building
Permit Application Process in Dutch Municipalities. In: Fifth International BPIC.
BPIC’15 (2015)

8. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
Proceedings of the 5th IEEE International Symposium on RE. pp. 249–262 (2001)

9. Viger, P.F., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.: SPMF:
A Java Open-Source Pattern Mining Library. Journal of Machine Learning Research
15, 3389–3393 (2014)

10. Wang, J., Han, J.: BIDE: Efficient Mining of Frequent Closed Sequences. In:
Proceedings of the 20th International Conference on Data Engineering. pp. 79–90
(2004)


