Perbandingan Konverter CUK dan SEPIC Untuk Pelacakan Titik Daya Maksimum Berbasis Panel Surya

Muhammad Syafei Gozali

Batam Polytechnics Electrical Engineering study Program E-mail: <u>syafei@polibatam.ac.id</u>

Abstrak

Untuk memenuhi peningkatan kebutuhan listrik, diperlukan pembangkit listrik yang memanfaatkan energi baru terbarukan. Perkembangan teknologi yang pesat saat ini, telah mampu memanfaatkan energi surya menjadi sumber energi listrik dengan menggunakan panel surya. Untuk mendapatkan daya yang maksimal dari panel surya dibutuhkan konverter dc-dc yang dikontrol dengan menggunakan algoritma pelacakan titik daya maksimum.Makalah ini menyajikan perbandingan konverter CUK dan SEPIC sebagai pelacak titik daya maksimum dari sistem panel surya. Kelebihan dan kekurangan dari kedua konverter ini telah dijelaskan dalam makalah ini. Algoritma yang digunakan untuk pelacakan titik daya maksimum adalah metode *perturb & observe*(P&O). Hasil luaran kedua konverter dievaluasi dan dibandingkan dari hasil simulasi.

Kata kunci: Panel surya, metode P&O, konverter CUK, konverter SEPIC

Abstract

To meet the increasing demand for electricity, is required the power plants that utilize renewable energy. The rapid development of technology currently, it has been able to take advantage of solar energy into electrical energy by using solar panels. To get the maximum power from the solar panel dc-dc converter is needed, which is controlled by using the maximum power point tracking algorithm(MPPT). This paper presents a comparison between CUK and SEPIC converter in maximum power point tracking of solar panel system. Advantages and disadvantages of both converters are described in this paper. Furthermore, Perturb and Observe (P&O) are used as maximum power point tracking algorithm. The evaluation of the output has been carried out and compared by software simulation.

Keywords: Solar panel, P&O method, CUK converter, SEPIC converter

Pendahuluan

Saat ini, penggunaan energi baru terbarukan (EBT) merupakan hal penting yang digunakan sebagai pembangkit listrik akibat dari berkurangnya cadangan bahan bakar fosil.Energi surya merupakan salah satu energi baru terbarukan yang dapat digunakan sebagai pembangkit listrik. Untuk mengkonversi energi surya menjadi listrik dapat dilakukan secara langsung yaitu dengan menggunakan panel surya atau disebut sebagai Pembangkit listrik tenaga surya (PLTS).

PLTS telah berkembang pesat seiring dengan target kebijakan energi nasional yang menjelaskan bahwa penggunaan energi baru terbarukan untuk pembangkit listrik pada tahun 2025 sekurang-kurangnya 17% [1]. Untuk memenuhi kebijakan energi nasional ini maaka PLTS dapat dihubungkan ke sistem jala-jala listrik nasional baik secara langsung atau melalui cadangan baterai [2].

Panel surya merupakan pembangkit listrik yang praktis,

tetapi pembangkit listrik ini memiliki efisiensi yang rendah, dimana daya yang dihasilkan tergantung dari iradiasi dan suhu.Untuk meningkat efisiensi dari panel surya maka digunakan teknik pelacakan titik daya maksimum. Algoritma palacakan titik daya maksimum telah banyak berkembang seperti; metode *Pesturb & Observe*(P&O), metode *IncrementalConductance*(IC), metode *ConstantVoltage*(CV), atau dengan *Artificial Intelegent*[3].

Algoritma pelacakan titik daya maksimum berfungsi untuk menjaga tegangan luaran dari panel surya konstan. Karena tegangan luaran dari panel surya merupakan tegangan DC maka digunakan konverter dc-dc. Umumnya digunakan konverter boost sebagai perangkat pelacakan titik daya maksimum. Konverter boost ini hanya bekerja jika taganagn masukan lebih kecil dari tegangan luaran yang dinginkan. Jika tegangan dari panel surya lebih besar dari tegangan yang dinginkan maka konverter boost tidak akan bekerja akibatnya daya maksimum dari panel surya juga tidak tercapai. Sebagai pengganti konverter boost dapat digunakan konverter buck-boost [4].

Pada makalah ini sebagai pengganti konverter buck-boost maka digunakan konverter CUK dan SEPIC.Untuk pelacakan titik daya maksimum dari panel surya digunakan metode P&O.

Pemodelan Panel Surya

Panel surya terbentuk dari kombinasi sel surya yang terhubung secara seri dan parallel.Rangakain ekuivalen dari sel surya ditunjukan pada Gambar 1.Tegangan dan arus dari sel surya dipengaruhi dari iradiasi dan temperature [5].

Gambar 1. Rangakaian ekuivalen sel surya

Rangkain ekuivalen dari sel surya menggunakan satu sumber arus I_m dan dua resistor R_s dan R_p yang terhubung secara seri dan parallel, dengan I_m dihitung menggunakan blok komputasi yang memiliki masukantegangan sel surya (V), arus panel surya (I), arus saturasi (I_O) dan arus sell surya (I_{pv}).

Untuk panel surya yang terbentuk dari beberapa sel surya, maka tegangan thermal panel surya dengan sel surya tehubung seri $V_t = N_s kT/q$, jika panel surya terbentuk dari sel surya yang terhubung parallel maka arus panel surya dan arus saturasi menjadi $I_{pv} = I_{pv,cell}N_P$, $I_O = I_{O,cell}N_P$, besarnya resistansi panel surya untuk sel surya yang terhubung seri dan paralel $R_S = R_S N_S / N_P$ dan $R_P = R_P N_S / N_P$, dengan N_s dan N_p adalahjumlah sel surya yang terhubung seri dan parallel.

Pada makalah ini, spesifikasi panel surya yang digunakan, ditunjukan pada Tabel 1.Dengan kurva karakteristik I-V dan P-V untuk perubahan iradiasi ditunjukan pada Gambar 2 dan Gambar 3.

TABEL 1.

SPESIFIKASI PANEL SURYA

PADA IRADIASI 1000W/M2 DAN SUHU 250C

Spesifikasi	Nilai
Jumlah sel surya	60
Daya maksimum (P _{MAX})	240 Wp
Tegangan pada saat daya maksimum (V _{MAX})	30.18 V
Arus pada saat daya maksimum(I _{MAX})	7.96 A
Tegangan pada rangkian terbuka (Voc)	36.72V
Arus pada rangkaian hubung singkat (Isc)	8.99 A

Gambar 3. Kurva karakteristik P-V

Algoritma Pelacakan Titik Daya Maksimum

Metode P&O merupakan teknik pelacakan titik daya maksimum yang banyak digunakan karena hanya menggunakan sedikit parameter dan struktur umpan balik yang sederhana [3,4,6]. Metode ini beroperasi dengan menambahkan atau mengurangi tegangan referensi (V_{ref}) secara periodik.

Gambar 4. Diagram alir metode P&O

Diagram alir dari metode P&O ditunjukan Gambar 4.Daya luaran (P) dari panel surya dibandingkan daya luaran dari sistem.Setelah daya luaran dibandingkan kemudian diamati tegangan (V) dari panel surya dan dibandingkan dengan tegangan dari sistem. Jika daya meningkat maka gangguan (*perturb*) akan meningkat kearah yang sama untuk siklus berikutnya, jika tidak maka gangguan akan bergerak sebaliknya. Dengan adanya perubahan daya yang terganggu secara tidak langsung juga menggangu tegangan pada terminal panel surya untuk seluruh siklus pelacakan titik daya maksimum. Dengan menjaga tegangan luaran dari terminal panel surya maka titik daya maksimum juga akan tercapai. Skema metode P&O dapat dijelaskan dengan persamaa matematika beikut ini:

Pada daerah sumber tegangan,

$$\frac{\partial P}{\partial V} > 0 \Longrightarrow V_{ref} = V_{ref} + \Delta V_{ref}$$
(1)

Pada daerah sumber arus,

$$\frac{\partial P}{\partial V} < 0 \Longrightarrow V_{ref} = V_{ref} - \Delta V_{ref}$$
(2)

Pada kondisi titik daya maksimum,

$$\frac{\partial P}{\partial V} < 0 \Longrightarrow V_{ref} = V_{ref} - \Delta V_{ref}$$
(3)

Konverter CUK dan SEPIC

A. Konverter CUK

Konverter CUK merupakan konverter dc-dc dengan besarnya tegangan luaran dari konverter ini dapat lebih besar atau lebih kecil dari tegangan masukan, tetapi tegangan luaran dari konverter ini memiliki polaritas yang terbalik dari tegangan masukannya. Topologi pensaklaran dari konverter CUK ditunjukan pada Gambar 5.Komponen induktor L₁ bertindak sebagai penyaring (*filter*) pada suplay DC untuk mencegah harmonic yang besar [7].Besarnya energi yang ditransfer yang berhubungan dengan induktor pada konverter CUK bergantung pada kapasitor C₁. Tegangan yang melewati induktor bernilai nol pada operasi keadaan yang stabil, $V_{C1} = V_S - V_O$.

Pada kondisi saklar tertutup, kondisi dioda terbuka, dan arus pada C₁, $(i_{C1})_{tertutup} = -I_{L2}$. Pada kondisi saklar terbuka arus pada L₁ dan L₂ membuat dioda tertutup. Arus pada C₁ menjadi, $(i_{C1})_{terbuka} = I_{L1}$.

Daya yang diserap beban R sama dengan daya yang disuplay dari sumber, $-V_O I_{L2} = V_S I_{L1}$. Untuk operasi satu perioda arus pada kapasitor sama dengan nol. Dengan waktu saklar tertutup adalah DT dan waktu saklar tebuka adalah (1-D)T maka, $-I_{L2}DT + I_{L1}(1-D)T = 0$.

Besarnya daya yang disuplay sumber harus sama dengan daya yang diserap beban, $P_S = P_O$ atau $V_S I_{L1} = -V_O I_{L2}$. Dengan mensubsitusi persamaan dari waktu buka dan tutup saklar terhadap daya yang diserap dan disuplay, maka didapat besarnya tegangan luaran dari konverter CUK,

B. Konverter SEPIC

Sama seperti konverter CUK, tegangan luaran dari konverter SEPIC dapat lebih besar atau lebih kecil dari tegangan masukannya, yang berbeda hanya polaritas dari konverter SEPIC tidak terbalik.Topologi pensaklaran dari konverter SEPIC ditunjukan pada Gambar 6. Pada kondisi operasi dalam keadaan stabil, besarnya tegangan yang melewati induktor adalah nol, sehingga besarnya tegangan pada kapasitor $C_1, V_{C1} = V_s$.

Pada kondisi saklar tertutup, kondisi dioda terbuka, induktor L₁ terisi dari sumber V_S, dan induktor L₂ mengisi C₁.Selama kondisi ini, tidak ada energi yang disuplay ke beban. Besarnya tegangan yang melewati L₁, $(v_{L1})_{tertutup} = V_S$, sedangkan pada kondisi saklar terbuka, kondisi dioda tertutup, L₁ mengisi C₁ dan secara bersamaan dengan L₂ memberikan arus ke beban. Besarnya tegangan pada L₁ pada kondisi ini, $(v_{L1})_{terbuka} = -V_O$. Jika waktu saklar tertutup adalah *DT* dan waktu saklar terbuka adalah (1-D)T dan besarnya daya yang disuplay sama dengan daya yang diserap beban, maka $V_S(DT) - V_O(1-D)T = 0$. Besarnya tegangan luaran dari konverter SEPIC,

$$V_o = V_s \left(\frac{D}{1 - D}\right) \tag{5}$$

Untuk menghitung nilai komponen dari kedua konverter dapat dilihat pada Tabel 2.

TABEL 2.

Komponen	Konverter CUK	Konverter SEPIC
L ₁	$L_{1} \geq \frac{V_{S}D}{f\Delta i_{L1}}$	
L_2	$L_2 \ge \frac{V_s D}{f \Delta i_{L2}}$	
C ₁	$C_1 \ge \frac{V_o D}{f \Delta v_{c1} R}$	$C_1 \ge \frac{D}{f(\Delta V_{C1}/V_o)R}$
C ₂	$C_2 \ge \frac{1-D}{f^2 (\Delta V_o / V_o) 8L_2}$	$C_2 \ge \frac{D}{f(\Delta V_o/V_o)R}$

PERSAMAAN UNTUK MENGHITUNG NILAI KOMPONEN KONVERTER

Hasil Simulasi

Simulasi sistem panel surya dilakukan dengan tiga tingkat perubahan iradiasi yaitu 1000, 500, 800 w/m2. Spesifikasi panel surya ditunjukan pada Tabel 1.Rangkaian dari konverter CUK dan SEPIC ditampilkan pada Gambar 7. Dengan menggunkan persamaan pada tabel 2 maka didapat nilai Komponen yang digunakan. Komponen ditunjukan pada tabel 3.

Rangkaian konverter CUK (a)

(b) Rangkaian konverter SEPIC

Gambar 7. Rangkain konverter CUK dan SEPIC pada sistem panel surya

Komponen	Konverter CUK	Konverter SEPIC
L ₁	2.5 mH	5 mH
L_2	2.5 mH	5 mH
C ₁	50 µF	8 µF
C2	45 µF	45 μF
IGBT	Switchingfrekuensi 10 kHz	

TABEL 3. NILAI KOMPONEN KONVERTER

Hasil simulasi dari kedua konverter ditunjukan gambar 8 s/d 12.Gambar 8 menunjukan daya luaran dari sistem panel surya dapat mencapai titik daya maksimum. Daya maksimum tercapai karena tegangan dari panel surya terjaga tetap seperti yang ditunjukan gambar 9(a). Hal ini menunjukan bahwa algoritma pelacakan titik daya maksimum telah bekerja. Karena tegangan terjaga tetap maka arus panel surya akan mengikuti perubahan dari daya, kurva arus panel surya ditunjukkan gambar 9(b). Kedua konverter yang digunakan mampu mencapai titik daya maksimum dengan methoda P&O.

Gambar 10. Daya luaran konverter

Gambar 11. Tegangan dan arus luaran konverter

Gambar 12. Tegangan pada kapasitor

Daya luaran dari konverter ditampilkan pada gambar 10.Daya luaran konverter sebanding dengan daya yang diberikan dari panel surya. Pada Gambar 10 terlihat bahwa *ripple*dari konverter SEPIC lebih besar dari konverter CUK. *Ripple*ini dapat dikurangi dengan memperbesar nilai kapasitor. *Ripple* daya dipengaruhi dari *ripple* tegangan dan arus. Tegangan dan arus luaran dari konverter CUK memiliki polaritas yang terbalik dari masukannya, sedangkan tegangan dan arus dari konverter SEPIC memilki polaritas yang sama dengan masukannya, seperti yang ditunjukan pada Gambar 11.

Gambar 12 menunjukan tegangan *stress* pada komponen kapasitor 1 dan 2 dari konverter. Gambar 12(a) terlihat, bahwa tegangan *stress* pada kapasitor 1 dari konverter CUK merupakan penjumlahan tegangan masukan dan tegangan luaran, sedangkan tegangan dari konverter SEPIC sebanding dengan tegangan masukannya, sehingga tegangan *stress* pada kapasitor 1 untuk konverter CUK lebih besar dari konverter SEPIC. Gambar 12(b) menunjukan tegangan *stress* pada kapasitor 2 dari kedua konverter. Besarnya tegangan *stress* pada kapasitor 2 sebanding dengan tegangan luaran dari konverter.

Kesimpulan

Konverter CUK dan SEPIC dapat digunakan untuk mendapatkan titik daya maksimum dari sistem panel surya. Konverter CUK memiliki polaritas tegangan dan arus luaran yang terbalik dari masukannya, sedangkan konverter SEPIC polaritasnya sama dengan masukannya. Untuk mendapatkan *ripple* yang kecil maka nilai komponen kapasitor yang digunakan untuk konverter SEPIC jauh lebih besar jika dibandingkan dengan konverter CUK, tetapi tegangan *stress* kapasitor dari konverter CUK lebih tinggi dibandingkan dengan konverter SEPIC.

Daftar Rujukan

- "Blueprint Pengelolaan Energi Nasional 2006-2025", Departemen Energi dan Sumber Daya Mineral, Jakarta, 2006.
- [2] C.V. Nayar, M. Ashari, W. W. L. Keerthipala, "A Grid-Interactive Photovoltaic Uninterruptible Power Supply System Using Battery Storage and a Back Up Diesel Generator", IEEE Transactions on Energy Conversion, vol. 15, no. 3, pp. 348-353, September 2000
- [3] Sung-Jun Kang , Jae-Sub Ko, Jung-Sik Choi, Mi-Geum Jang, Ju-Hui Mun, Jin-Gook Lee, Dong-Hwa Chung, "A Novel MPPT Control of photovoltaic system using FLC algorithm", KINTEX 11th International Conference on Control, Automation and Systems Gyeonggi-do, Korea, Oct. 26-29, 2011.
- [4] T. Patarau, S. R. Daraban, D. Petreus, and R. Etz "A Comaprison between Sepic and Buck–Boost Converters Used in Maximum Power Point Trackers", IEEE 34th Int. Spring Seminar on Electronics Technology, 2011.
- [5] M. G. Villalva, J. R. Gazoli, E. Ruppert F. "Modeling and Circuit-Based Simulation Of Photovoltaic Arrays", Brazilian Journal of Power Electronics, Vol. 14, no. 1, pp. 35-45, Februari 2009.
- [6] H. Abidi, A. bennani, D. M. Miracle, "MPPT Algorithm and Photovoltaic Array Emulator using DC/DC Converters", IEEE, 2012
- [7] Daniel W. Hart, "Power Electronics", Mc Graw Hill, 2010.